Computational Method 2 Spring 2025

HW3

Q1 Dual of 3D Ising model

- a) Show that the low temperature expansion of the 3D Ising model is equivalent to the high temperature expansion of a 3D Z(2) gauge theory. (work out the first 2 correction terms)
- b) What about the high temperature expansion of the 3D Ising model? Is it equivalent to the low temperature expansion of the Z(2) gauge theory?
- c) Argue that the the dual of 4D Z(2) gauge theory is another Z(2) gauge theory.

Q2 Heat Capacity

a) Show that the heat capacity

$$c = \frac{\partial}{\partial T} \epsilon$$

where $\epsilon = \langle E \rangle / N$, can be obtained from measuring the fluctuation of the total energy, i.e.

$$c = \beta^2 \frac{1}{N} \left(\langle E^2 \rangle - \langle E \rangle^2 \right).$$

b) Write a numerical code for solving Ising Model. Numerically realize the equivalence of the above relations for Ising Model in 4D.

Q3 Numerical integration with random distribution

a) Compute the value of π in the following manner:

Perform N trials of this task: select two random numbers in the range of 0:1, accept the pairs if the sum of their square is smaller than 1.0. Finally, evaluate

$$A = \frac{N_{\text{accepted}}}{N_{\text{trials}}}.$$

What is the expected result?

b) Generate a non-uniform distribution of random number x (N>35000) in the range of 0.0:4.0 according to the distribution

$$\rho(x) = e^x$$

Plot a normalized histogram H of your collection of x, and verify that it follows the distribution

$$H = \rho(x)/\text{norm}$$

where

$$norm = \int_0^4 dx \rho(x).$$

c) Use the random collection to compute an integral, i.e.,

$$\frac{1}{N} \, \sum \tilde{f}(x) \approx \frac{\int dx \, \tilde{f}(x) \, \rho(x)}{\int dx \, \rho(x)}.$$

Choose, e.g. $\tilde{f}(x) = e^{-2x}$ and verify that

$$\frac{\text{norm}}{N} \sum \tilde{f}(x) \approx \int_0^4 dx e^{-x}.$$

d) What do we get when we choose $\tilde{f} = \rho^{-1}$? Compute the result.

Q4 Average distance in a box.

If we randomly pick 2 points in an N-dim cube, what would be the average distance? (Take box size to be 1.0 for simplicity.)

a) For 1D, the analytic solution is given by

$$\frac{\int dx_1 dx_2 |x_1 - x_2|}{\int dx_1 \int dx_2}.$$

Compute the integral. (ans. 1/3) (OMG!)

Verify this result by random sampling.

b) Compute the results for N=2 to 10. (List them in a table.)

Q5 Moments, Cumulants and all that

 $W = \ln Z$ is extensive.

Introducing an external field h to the integral

$$Z(h) = \int_{-\infty}^{\infty} dx \, e^{-V(x^2 + x^4) + Vh \, x},$$

and define

$$Z_n = \frac{1}{Z(h)} \partial_h^n Z(h) = \langle x^n \rangle \times V^n$$

and

$$W(h) = \ln Z(h)$$
$$W_n = \partial_h^n W(h).$$

a) Show that

$$\begin{split} W_1 &= Z_1 \\ W_2 &= Z_2 - Z_1^2 \\ W_3 &= Z_3 - 3Z_1Z_2 + 2Z_1^3 \\ W_4 &= Z_4 - 4Z_1Z_3 - 3Z_2^2 + 12Z_1^2Z_2 - 6Z_1^4 \end{split}$$

b) Verify these relations numerically, i.e. taking numerical derivatives on W(h) and performing corresponding numerical integrations

$$Z_n = \frac{1}{Z(h)} \int_{-\infty}^{\infty} dx \, V^n x^n \, e^{-V(x^2 + x^4) + Vh \, x}.$$

Plot them as functions of h in the range of -2:2. (Take V=2.)

c) Verify the linked cluster theorem: $W_n \propto V$ at large V, i.e. $W_n/V = w_n$ becomes intensive.