Computational Method 2 Spring 2025

HW1

Q1 Residue theorem.

The Cauchy's residue theorem states that the line integral of an analytic function over a closed path Γ is given by $(2\pi i \text{ times})$ the sum of residues:

$$\oint_{\Gamma} dz f(x) = 2\pi i \sum_{\text{Res}} f(z_n).$$

• Take

$$f(z) = \frac{1}{z^2 + 1}$$

and verify the residue theorem by numerically computing the integral along the paths:

- A) a square centered around the pole z = i;
- B) an upper semi-circle of radius R=2. Separate the contributions from the real line: -R:R and the arc.
- Repeat the calculation in B) for a larger R. Show that the arc contribution decreases as $R \to \infty$ and only the real-line contribution remains, hence

$$\int_{-\infty}^{\infty} dx \, \frac{1}{x^2 + 1} = \pi.$$

Q2 Schwinger proper time regularization.

Consider the following identities:

$$\mathcal{A}^{-1} = \int_0^\infty dt \, e^{-t\mathcal{A}}$$
$$\ln \mathcal{A} = -\int_0^\infty dt \, \frac{1}{t} \left(e^{-t\mathcal{A}} - e^{-t\mathcal{I}} \right).$$

• With $A \to p_4^2 + \omega^2$, show (again!) that

$$\int_{-\infty}^{\infty} \frac{dp_4}{2\pi} \, \frac{1}{p_4^2 + \omega^2} = \frac{1}{2\sqrt{\omega^2}}.$$

• The second identity is useful for regulating divergent integral. Consider

$$W[\omega; \Lambda] = \int_{-\infty}^{\infty} \frac{dp_4}{2\pi} \ln \left(p_4^2 + \omega^2 \right)$$

$$\to \int_{-\infty}^{\infty} \frac{dp_4}{2\pi} \int_{1/\Lambda^2}^{\infty} dt \left(-\frac{1}{t} \right) e^{-t(p_4^2 + \omega^2)} + C$$

$$= -\int_{1/\Lambda^2}^{\infty} dt \, \frac{1}{t^{\frac{3}{2}}} \frac{1}{2\sqrt{\pi}} e^{-t\omega^2} + C.$$

Compute $W[\omega; \Lambda]$ numerically for a large enough Λ . You can forget about the integration constant C. Compare with the analytic result:

$$W[\omega; \Lambda] = -\frac{\Lambda}{\sqrt{\pi}} + \omega + \mathcal{O}(1/\Lambda).$$

• This suggests the definition of a physical W function:

$$W_{\mathrm{phys.}}[\omega] = \lim_{\Lambda \to \infty} (W[\omega; \Lambda] - W[0; \Lambda]) = \omega.$$

Re-derive the previous result via

$$\int_{-\infty}^{\infty} dx \, \frac{1}{x^2 + \omega^2} = \frac{1}{2\omega} \frac{\partial}{\partial \omega} W_{\text{phys.}}[\omega].$$

• Generate a 3 x 3 positive definite matrix A. Compute the inverse and determinant using the above identities.

Q3 Logistic Map.

Consider the logistic map:

$$x_{n+1} = rx_n \left(1 - x_n \right).$$

- Produce the bifurcation diagram: for a given r within (0,4), iterate (starting from any initial value within (0,1)), collect the end point(s) and plot them as a function of r.
- Derive an analytic result for the stable end points within r < 3. Plot it on top of the bifurcation diagram.
- For r = 3.6, collect all the points $\{x_j\}$ from iterations and plot them in a normalized histogram. This is called the invariant density.
- Plot the invariant density at $r \to 4$. Compare with the analytic result:

$$\rho(x) = \frac{1}{\pi \sqrt{x(1-x)}}.$$

• Derive the above analytic result for $\rho(x)$.